
ED 052 621

DOCUMENT RESUME

211 EM 009 081

AUTHOR Sass, Richard E.
TITLE A Computer-Based Instructional Management Program

for Classroom Use.
INSTITUTION Pittsburgh Univ., Pa. Learning Research and

Development Center.
SPONS AGENC7 Office of Education (DHEW), Washington, D.C.
REPORT NO R-13
BUREAU NO BR-5-0253
PUB DATE May 71
CONTRACT OEC-4-10-158(010)
NOTE 76p.; Thesis submitted to the School of Education of

Pittsburgh University

EDRS PRICE
DESCRIPTORS

ABSTRACT

EDRS Price MF-$0.65 HC-$3.29
*Computer Assisted Instruction, Computer Oriented
Programs, *Computer Programs, Course Organization,
*Curriculum Design, Data Bases, Elementary Science,
Individualized Instruction, *Individualized
Programs, *Learning Activities, Models

An instructional management program was developed to
assist students in selecting learning activities. The program was
based on a general model for specifying hierarchical curriculum
structure. This mouel was developed using the directed graph, a
mathematical form of a structural model. A hierarchy could then be
generated from the curriculum designer's responses about the
prerequisite relationships among the lessons in his curriculum. Using
a student mastery data base, programs were designed to input data on
a students mastery of lessons, list data, and putput options for
learning activities for students. The program to provide options
eliminated lessons which students had already mastered and printed
out an option only if all its prerequisites had been mastered. Also,
feedback about activities chosen was returned to the designer.
Flowcharts for these programs are included. Field tests of the
programs in a first-grade science class led to the conclusion that
its future application requires mature students, a relatively free
instructional setting, a quick and reliable computer system, outside
financing, close ties to classroom management, and a structured
curriculum based on well defined objectives. (Author/JK)

U
N

IV
E

R
S

IT
Y

 O
F

 P
IT

T
S

B
U

R
G

H
- LE

A
R

N
IN

G
 R

\
D

 C
E

N
T

E
R

1971/13

A
 C

O
M

P
U

T
E

R
 - B

A
S

E
D

 IN
S

T
R

U
C

T
IO

N
A

L M
A

N
A

G
E

M
E

N
T

P
R

O
G

R
A

M
 F

O
R

 C
LA

S
S

R
O

O
M

 U
S

E
R

IC
H

A
R

D
 E

. S
A

S
S

IZ
9Z

5003
E

3oLoA
bia

'-4

rNJ

c\J

C)
C=5

La

A COMPUTER-BASED INSTRUCTIONAL MANAGEMENT

PROGRAM FOR CLASSROOM USE

Richard E. Sass

Learning Research and Development Center

University of Pittsbnrgh

May, 1971

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

The research reported herein was supported by the National Science
Foundation and by the Learning Research and Development Center sup-
ported in part as a research and development center by funds from
the United States Office of Education, Department of Health, Educa-
tion and Welfare. The opinions expressed in this publication do not
necessarily reflect the position or policy of the National Science
Foundation or the Office of Education and no official endorsement
should be inferred.

ABSTRACT

The purpose of the investigation was to develop an instruc-
tional management program based on a general model of curriculum
structure that, when implemented, would promote self-direction by
assisting the student in the selection of learning activities. A
general model for specifying hierarchical curriculum structure was
developed using the directed graph, a mathematical form of a struc-
tural model.

Based on the digraph model, a computer-based instructional
management program was developed using the University of Pittsburgh's
Time-Sharing System (PISS). Using an interactive computer program, a
structural hierarchy could be generated as a result of the curriculum
designer's responses regarding the prerequisite relationships among
the lessons of his curriculum. An analysis of his responses ruled
out such structural ambiguities as circular and redundant prerequisite
relationships among lessons. The student mastery data base was set
up in the form of a linked list in order to facilitate accessibility
to each student's record of mastery. Interactive computer programs
which used the mastery data base included a program to input mastery
data, a program to list the data, and the program used by the students
to receive options of learning activities. The program to provide
options used the information from the mastery data, file to eliminate
mastered lessons from a student's list of options, and permitted an
option to be presented only if all its prerequisites had been mastered.
The use of the digraph model for structure insured that changes in the
curriculum required regenerating only the stored structural information.
The program designed to provide feedback information to the curriculum
designer provided for an after- the - -fact examination of the initial
structure based on the use of the curriculum materials, Feedback
information included the percentage of students who mastered each
lesson, the percentage of cases for which mastery of a prerequisite
lesson was followed by mastery of the next higher-ordered lesson, and
the percentage of cases for which an implied order of mastery was
violated for two related lessons.

The utility of the management program was demonstrated by
implementing it in a school setting which employed an individualized
curriculum. It was applied to the first grade Individually Prescribed
Instruction (IPI) Science classes at Oakleaf Elementary School in
suburban Pittsburgh, Pennsylvania. Students were allowed to interact
directly with Teletype terminals to obtain a choice of learning activi-
ties when it came time for them to receive a new prescription. At the
end of the school year, the mastery information was used to verify the
curriculum structure.

Observations of the operation of the management program in the
school led to the conclusion that its future application requires mature
students, a relatively free instructional setting, a quick and reliable
computer system, outside financing, close ties to classroom management,
and a structured curriculum based on well-defined objectives of instruc-
tion.

ii

FOREWORD

The author would like to thank the members of his doctoral

committee, Drs. Robert Baldwin, James Carlson, William Cooley,

Richard Cox, and Leopold Klopfer, for their helpful suggestions,

criticisms, and comments. He extends appreciation to Dr. Cooley,

his faculty advisor, for encouragement and support throughout his

doctoral study. For help during the field test of the management

program, he would like to thank Mrs. Maria Clark of the Learning

Research and Development Center, and Mrs. Peggy Gump and Mr. John

Kirk of Oakleaf School. Credit goes to Mrs. Terri Komar for a

typing job well done.

This report is based on the author's doctoral dissertation

submitted to the graduate faculty in the School of Education in the

fall of 1970.

iii

4

TABLE OF CONTENTS

Page

ABSTRACT ii

FOREWORD iii

LIST OF FIGURES

LIST OF TABLES

I. THE PROBLEM 1

II. DEVELOPMENT OF THE MANAGEMENT PROGRAM 9

A. Model for the Structure 9

B. The Processor to Specify Structure 14

C. The Mastery Data Base 28

D. Utility Programs to Maintain the
Data Base 31

E. The Program to Provide Options 35

F. Feedback for the Curriculum Designer 41

G. The Management Program 4?

III. RESULTS OF THL FIELD TEST 47

A. Choice of IPI Science 47

B. Specification of Structure 50

C. Mastery Data 54

D. Implementation of the Management
Program 56

E. Summary of the Year's Mastery Data 56

IV. CONCLUSION 61

REFERENCES 69

iv

5

LIST OF FIGURES

Figure Page

1 Processor to Specify Structure 16

2 Lesson Identification Sequence 18

3 Specification of the Relations . 20

4 Changes to the Relations 21

5 Generation of the Final Digraph 23

6 Program to Input Mastery Data 34

7 Program to List Mastery Data 36

8 Program to Provide Options 40

9 Mastery Data Summary Program 44

10 Schematic Representation of the Management Program . . 45

11 Student Order of Program 49

12 Lesson List 52

13 Hierarchical Structure of Curriculum 53

LIST OF TABLES

Table Page

I Oakleaf Mastery Data Summary 58

I. THE PROBLEM

The purpose of this investigation was to examine certain

problems associated with the development of a computer -based manage-

ment program for use with adaptive instructional systems. Adaptive

systems, in which some aspect of the instruction is tailored to the

individual differences of students, form the basis of what is com-

monly called "individualized instruction." The primary objective of

the investigation was to develop a management program based on a

general model of curriculum structure that, when implemented, would

promote self-direction by assisting the student in the select%on of

learning activities. In addition, the utility of the program was

to be demonstrated by implementing it in a school setting employing

individualized instruction, and the problem of using the data

generated to verify the curriculum structure was to be examined.

The investigation consisted of the following three steps:

1. Use of a general model to specify curriculum
structure.

2. Development of a computer-based management
program compatible with that model.

3. Application of the management program to a
portion of an individualized curriculum.

An early attempt to individualize instruction was the Winnetka

Plan, described by Washburne (1922), which was based on the idea that

time should be a variable unit within the curriculum, whereas achieve-

ment should be a constant unit. In describing the effect of this

idea on the use of classroom time and evaluation procedures, he

pointed out that previous curricula were based on fixed blocks of

time. Within the time units, pupil achievement varied with the

student's ability. In contrast, the Winnetka Plan varied time to

fit the students' capacities within fixed units of achievement.

Each child was required to master certain essential skills, but

at his own rate of progress. To develop units of achievement it

was necessary to define which goals must be mastered and at what

level, to prepare tests which covered the subject matter of each

unit and diagnosed difficulties, and to prepare remedial practice

materials to enable a student to make up deficiencies shown by the

tests. Washburne asserted that only when achievement replaced time

as the constant factor, could instruction be individualized to meet

the needs of the child. More recent attempts to individualize

instruction have centered around the concept of mastery learning,

which is based on the idea of keeping achievement constant. Carroll

(1963) and Bloom (1968) discuss the model, ideas, and strategy of

the concept of mastery learning as it is generally used today.

Several programs involved in adapting the operation of

schools to individual differences include project PLAN, a guidance

management system for the classroom (Flanagan, 1969), the Indi-

vidually Prescribed Instruction project (Glaser, 1968) for elementary

grades, and the Primary Education Project (Resnick, 1967) for pre-

school and kindergarten students. In practice, the units of achieve-

ment that are to be mastered in these programs are under constant

study. The material and methods of instruction are modified so that

2

they permit mastery of the objectives for each student in the shortest

possible time.

The computer has been used in education to analyze data used

in studies, to directly provide instruction to students (computer-

assisted instruction), to test students (computer-assisted testing),

to keep track of test results and other data for curriculum evalua-

tion or teacher feedback (computer-managed instruction), and to

perform operations involving more than one of these uses. Suppes

(1966, p. 208) stated that the computer can aid in the individualiza-

tion of instruction because it can be programmed to follow each

student's progress and to use the information as a basis for select-

ing the new concepts to which he should be exposed next.

One of the reasons why computer systems have Leen less than

a complete success in their use in individualization is that they

typically require a thorough and complete specification of the cur-

riculum to which they are to be applied. Once implemented, the

systems tend to resist changes to the curriculum that would upset

their smooth operation. Therefore, a computer system capable of

aiding an individualized program should be adaptable in the face

of change, even after it has been implemented. The demands of the

computer system on the classroom personnel should be kept as light

as possible, even though the system must be responsive to their

needs. A further consideration shaping the form of the program

that was developed was to avoid the spectre of computer control of

the educational environment. Whatever its specific function, the

3

9

computer should be perceived by the student as a means of helping

him to more effective learning. Ideally, a computer-based manage-

ment program would, in the words of Cooley (1970), "serve as a

device for helping the student to explore and control his environ-

ment rather than a device for controlling him in that environment

[p. 25]."

To be useful, the management program was envisioned as a

system that would be adaptable to changing curricula, that would be

as simple as possible for the classroom personnel to maintain, and

that would require storing the minimum amount of information about

the curriculum and the students and still be effective. The program

should be easily usable by either teacher or student, and it would

not unnecessarily restrict either. The management program that was

developed also allowed the student to determine his own instructional

sequence, was generally applicable to any set of instructional

materials based on the mastery of specified objectives, and provided

for the examination of the curriculum in light of results of pupil

experience within that curriculum.

The property of an individualized curriculum which suggested

the development of a management program to provide a choice of

instructional sequence was the "learning hierarchy" concept described

by Gagnd (1962). If a curriculum can be described by a set of

hierarchically related learning tasks, it is possible to unambiguously

specify a structure for the set of instructional materials correspond-

ing to those tasks. That one might describe the structure of an

4

adaptive curriculum by using the learning hierarchy technique sug-

gested the development of a general management program which would

not be bound to one particular program of instruction. In order to

be able to describe the structure of any curriculum, it was first

necessary to develop a general structural model which was amenable

to computer-based procedures. The management program was then

designed to be compatible with the structural model that was used

to specify the structure of the curriculum.

Since one objective of the present investigation was to

design a management program which is generally applicable to various

instructional schemes, it was important that the development of that

program not be dependent upon a single idea of a learning hierarchy.

Therefore, in referring to the body of the instructional program to

which the management program was applied, the word curriculum was

used. In describing how the parts of the instructional program

related to one another, instead of using the phrase "learning hier-

archy," the more general word structure was used. The instructional

sequence is the order in which the parts of the instructional pro-

gram were taken by the student. The structure of a given curriculum

was specified by the curriculum designer as part of the input to

the management program; the instructional sequence was determined

by the student after interacting with the management program.

An actual curriculum structure was not specified until the

management program was utilized for a specific application. The

structure, specified in terms of the general structural model, was

5

generated as a result of implementing the management program. Simi-

larly, the student data was generated as a result of using the instruc-

tional materials in the classroom. The management program can con-

tinue to be used even if the curriculum changes, whereupon the program

can provide the vehicle for implementing that change.

The program chosen to demonstrate the applicability of the

management program was the Individually Prescribed Instruction (IPI)

project (Bolvin & Glaser, 1968). The curriculum chosen was one part

of the Science program in the form that it was being used at the IPI

laboratory school in the Baldwin-Whitehall School District in suburban

Pittsburgh, Pennsylvania. Helmer (1969, p. 498) noted that the

development efforts of the IPI program have been heavily influenced

by the idea of learning hierarchies of instructional or behavioral

objectives. Bolvin (1968) stated that "Precisely stated objectives

permit the analysis of the behaviors required as prerequisites to

a given objective. This analysis serves as a guide to the curriculum

designer in sequencing and ordering the objectives [p. 239]." The

role of the management program was to keep track of each student's

achievement and to allow him to progress within the structural frame-

work of the curriculum. The program was capable of gaining access

to each student's mastery record, updating that record as additional

material was mastered, and presenting the student with a list of

instructional materials from which to choose suitable to his mastery

record.

6

As summarized in brief form by Lindvall, Cox, and Bolvin

(1970), the overall goal of IPI is "to develop an educational program

which is maximally adaptive to the requirements of the individual

learner [p. 34]." They assume that attention to the individual

differences of the students can result in more effective learning

on the part of all pupils. As part of the overall goal, six subgoals

were listed as features of IPI designed to achieve individualization:

I. Every pupil makes regular progress toward
mastery of instructional content.

II. Every pupil proceeds to mastery of instructional
content at an optimal rate.

III. Every pupil is engaged in the learning process
through active involvement.

IV. The pupil is involved in learning activities
that are wholly or partially self-directed and
self-selected.

V. The pupil plays a major role in evaluating
the quality, extent, and rapidity of his
progress towards mastery of successive areas
of the learning continuum.

VI. Different pupils work with different learning
materials and techniques of instruction adapted
to individual needs and learning styles [pp. 30-34].

The six subgoals were synthesized from a survey of earlier writings

(Bolvin, 1968; Glaser, 1966, 1968; Bolvin & Glaser, 1968; Lindvall

& Bolvin, 1966), which reflected various statements of goals of the

development effort of IPI. Since the computer system was developed

to be applied to an individualized program, the aims of that program

were examined to determine whether they were compatible. Goals I

and II are concerned with mastery at a student's own rate, which is

7

characteristic of most individualized programs. Goals III and IV

are concerned with involvement in the learning process and self-

direction, respectively. The computer-based management program could

contribute to these goals if it allowed the student to become involved

in determining his own prescription for learning through use of the

computer. Goal V is concerned with self-evaluation and goal VI is

concerned with the technique of instruction. These could be furthered

by the management program if it allowed the student to determine his

own sequence of instruction and to choose specific learning materials

which reflect his interests. If the management program provided the

opportunity for self-direction and a sense of active involvement in

the choice of learning materials, it would be compatible with these

goals.

The spirit of a program of individualization is to allow a

greater measure of freedom in the learning process. A computer

system developed to be applied to such a program should contribute

to that spirit. This consideration was a major factor in deter-

mining the form of the management program that was developed as

part of this investigation.

8

14

II. DEVELOPMENT OF THE MANAGEMENT PROGRAM

A. Model for the Structure

As a first step in developing a computer-based management

program, a method of unambiguously specifying a general hierarchical

structure was required. This led to an investigation of the general

notion of structure. The problem of the description of structural

properties in the natural sciences, social sciences, and behavioral

sciences suggests applying certain branches of mathematics which

deal with the abstract notion of structure. The work of Euler (1707-

83) led to the fields subsequently known as topology and graph theory.

Cayley (1821-95) advanced the field by his interest in structural

problems in chemistry, as did Kirchhoff (1824-87) with his formulation

of the laws of electrical network theory. The abstract notion of

structure is treated in the mathematical theory of directed graphs,

or digraphs as they are sometimes called. This theory is concerned

with relationships among pairs of abstract elements. To the empirical

scientist, the digraph can serve as a mathematical model of the

structural properties of any empirical system consisting of relation-

ships among pairs of elements. Applications range from communications

systems in engineering to personality structures in psychology

(Harary, Norman, & Cartwright, 1965, pp. 1-2).

The directed graph, or digraph, can serve as a structural

model for any system which can be thought of in terms of directed

relationships among pairs of elements. The digraph can serve as a

model to describe curriculum structure if the instructional materials

9

or learning tasks are considered to be the elements, anti the hierar-

chical relations of those tasks are considered to be the relationships

among the elements. The type of relationship required by hierarchical

relations can be represented by a special class of digraphs which

contain no cycles, called acyclic digraphs. Digraphs which represent

hierarchies are acyclic because the nature of a hierarchical rela-

tionship is such that all relations are directed in only one way:

from the subordinates to the superiors. These ideas may be illustrated

by considering two elementary examples.

A digraph can be represented in general by the set V of

elements called "points" and the set X of elements called "lines."

Each element x. in X then corresponds to an ordered pair of elements

(v.1 , v.) in V, representing a line going from point v. to point v..

Consider the following representation of a digraph consisting of the

set of points V = {171 v2'173 v4 v5} and the set of lines X = {x1 x2

x3 x4 x5 x6 x7 x6}:

10

16

The lines of X can be represented in terms of ordered pairs of points

of set V to indicate relationship between pairs of those points:

xi = (vi, v2)

x2 = (vs, vi)

x3 = (72, v5)

X4 = (Vi, V4)

X5 = (V3, V2)

X6 = (v4, v5)

X7 = (v5, V3)

X8 = (v3, V4)

Let the ordered pair (vi, vj) be represented by the simplified nota-

tion v
i

v,. Then the lines of X can be represented:

xl = VI V2

X2 = V5 VI

X3 = V2 + V5

x8 = 173 V4

Note that this digraph contains four cycles that are represented by

the following four sets of three lines:

{xl x3 x2 }, {x2 X4 X6}, {x3 x7 x5}, and {x6 x7 x$}

Alternatively, the cycles can be represented in terms of the points

by using the simplified notation. For example, the cycle {x1 x3 x2}

can be represented by vi v2 v5 v1.

As a second example, consider a simple hierarchy relating a

set of five lessons, where lesson L5 is the terminal lesson of the

set. Two lessons, L3 and L4, are both necessary for the mastery of

11

17

L5. Lesson L2 is necessary for the mastery of lesson L4, and lesson

Ll is necessary for the mastery of both L3 and L4. In this example,

the hierarchy may be represented by a digraph in which the lessons

are represented by the set of points V = {Ll L2 L3 L4 L5} and the

relationship "is necessary for the mastery of" is represented by the

set of lines X = {xi x2 x3 x4 x5 }. The digraph is represented graphi-

cally as:

Note that each line of the set X corresponds to a relation consisting

of an ordered pair of points in V, or in simplified notation:

xl = L4 4 L5

x2 = L3 4 L5

x3 = L2 4 L4

x4 = Ll 4 L4

x5 = Ll 4 L3

Note further that this digraph contains no cycles, which means that

there is no point in the set V for which there exists some (non-

trivial) sequence of lines whereby it is possible to travel in such

a way as to return to that same point. It is obvious in this example

12

18.

that if one starts from any of the five points one must always end

at point L5, since there are no lines out from point L5. In general,

the digraph of a hierarchical structure will contain no two mutually

reachable points, i.e., there will exist no sequence of lines whereby

one may return to a starting point, which is the definition of an

acyclic digraph.

In order to specify the structure of a curriculum in terms

of a digraph model, two things are needed: (1) the set of points V

that define the curriculum, and (2) the relations which correspond

to the set of lines X that define the hierarchical structure. In

the second example, this meant identifying five lessons, Ll through L5,

and the five relations which are represented by the lines. In

addition, a digraph formed in this manner must possess the following

properties if it is to represent a hierarchical structure. First,

it must possess at least one point with no lines leading out from

it. Such a point, called a terminal node, corresponds to the

terminal skill, behavior, or lesson in the curriculum. It must

also possess at least one point with no lines leading into it,

corresponding to a basic or entering skill, behavior, or lesson.

Next, the digraph must be acyclic, which in turn implies that it

is possible to generate some kind of level structure by means of

a suitable algorithm. A level structure based on distance up the

structural hierarchy is a logical first step toward the graphical

representation of the curriculum structure. Finally, in any hierar-

chical structure, the relations between pairs of points are necessarily

13

19,

transitive in the set theory sense. This means that, in the second

example, since Ll was necessary for L3, and L3 was in turn necessary

for L5, the point Ll was necessary for L5, even though it was not

explicitly stated. If it were explicitly stated in specifying the

relational properties of the curriculum, it would have been redundant,

and its inclusion would not have been necessary in representing the

hierarchy by the digraph model.

B. The Processor to Specify Structure

The task of specifying the structure of a curriculum can be

divided into two main areas: specifying the curriculum, or the

points on the digraph model; and specifying the hierarchical rela-

tions, or the lines on the digraph model. An interactive processor

program was developed to allow the curriculum designer to specify

the st:ucture while working at a remote computer terminal. This

processor program was implemented using the University of Pittsburgh's

Time-Sharing System. The hardware consists of IBM's System 360/50

configuration with remote IBM 2741 terminals located throughout the

University. The programming language used for this program was

CATALYST/PIL (Dwyer, 1969), which is supported by the time-sharing

system, was developed to handle interactive programming tasks, and

has been interfaced with an interpretive language. This language

was chosen because of its ability to handle large blocks of text

while using a relatively small amount of core storage, and because

of the relative ease by which file manipulation is possible.

14

2J

The two files created by the processor program, the lesson

identification file and the structure file, were designed to be

compatible with the rest of the management program. In the time-

sharing system, each file that is saved is referred to as a dataset,

which is identified by a dataset name followed by a three-character

attribute. In this application, the attribute stood for the inter-

pretive language by means of which the datasets were created, namely

"PIL." The two output files from this program were stored on disk

as datasets named LESSON:PIL and STRUCTURE:PIL, corresponding to

the lesson identification file and the structure file, respectively.

A basic outline of the processor to specify structure is

represented by the flow chart in figure 1. The first section of

the program allows the user to identify the points of the curriculum,

which are called lessons for the purpose of the management system.

There are three parts to the identification of the lessons. The

first part is the lesson code, which consists of from one to four

characters that serve to identify that lesson throughout all phases

of the management system. The code was necessary because of its

conciseness; it must be entered often by means of the remote terminals.

The second part of the identification is the lesson name, by which

the lesson is recognized by the curriculum designer and by the class-

room personnel. A third part is called the description of the lesson.

It consists of information for the benefit of the student using the

management program to help him make a choice among lessons. The

name and description for each lesson are limited to about 115 characters,

15

21.

Start

Part 1. Lesson Identification

Sequence. (User specifies

curriculum points.)

Part 2. Specification of the

Relations. (User .specifies

relations among points.)

Part 3. Changes to the Relations.

(User makes changes to the relations.)

Part 4. Generation of the

Final Digraph.

Finish

Information saved

as a dataset

named LESSON:PIL.

Information saved as

a dataset named

STRUCTURE:PIL,

Figure 1. Processor to Specify Structure

16

including blanks. Because the IBM 2741 terminals include both upper-

and lower-case letters, the characters used for the lesson codes are

forced to upr.er case so that the management system will be compatible

with the use of remote terminals which do not include lower-case

letters. The lesson identification sequence is described in detail

in the flow chart in figure 2.

The second section of the program allows the user to specify

the prerequisite relationships among the points of the curriculum,

i.e., to specify its structure. The program determines structural

relationships by presenting one lesson and then asking which of the

remaining lessons are necessary for its mastery. As a starting point

for this process, the user is asked to identify one or more terminal

lessons, ones which are not necessary for the mastery of any of the

other lessons. A terminal lesson corresponds to a terminal node of

a digraph: a. point with no lines leading out from it. The procedure

of starting with the terminal lessons is similar to that used in task

analysis; i.e., starting with desired outcomes and working downward

to more basic skills.

The structural relationships, or relations, between pairs of

lessons are determined by the following procedure. Starting with

the terminal lessons and continuing downward until all lessons are

covered, the interactive program asks the user, "Which lessons are

necessary for the mastery of lesson X?" The user enters lesson

codes for all lessons directly prerequisite to the lesson in question.

Only those lessons immediately "below" the lessun in question need

17

23'

Start '

Does old

1

lesson list

\\\,.........exist?

no

yes

User specifies CODE, NAME,

and DESCRIPTION for as

many lessons as desired.

Program catalogs new lesson

list as a dataset named

LESSON:PIL.

Finish

User deletes as many

lessons as desired

from old list.

User specifies CODE, NAME,

and DESCRIPTION for lessons

to be added to old list.

Program destroys old dataset

named LESSON:PIL.

Figure 2. Lesson Identification Sequence

18

24

be entered. The specification of the relations is represented by

the flow chart in figure 3. The quastion regarding necessary lessons

is asked just once for each lesson which was specified in the first

section. The result of this procedure is that a table is set up

that allows each lesson to be linked with as many other lessons as

were specified. The use of the interpretive language is advantageous

because it allocates storage for each link only as it is specified,

thereby eliminating the need for the dimensioned array of all possible

lesson links.

The third section of the program allows the user to reflect

on the structure he has specified and to modify it by adding more

relations to it or by deleting some of the relations that were

specified. In addition to adding or deleting relations, he may also

obtain a list of all the relations so far specified, or a list of

the relations involving just a single lesson. In this way he may

check to see that what he has so far specified is indeed what he

wants. This part of the program is represented by the flow chart

in figure 4. The user may obtain a list of the relations he has

specified and go back and change them as many times as he wants.

Once he has signified that there are no more changes, however, the

structure he has created is analyzed and if no errors are found,

the information is saved as a dataset. To make any changes past

this point, he would have to rerun the processor program.

In the fourth section of the program, the structure that the

user has specified is fitted to the acyclic digraph model around

19

Start

IUser enters codes for terminal lessons.

Program presents a lesson code to the user.
1

i

Program asks question, "Which

lessons are necessary for this one?"

User enters codes for necessary lessons.

Program determines:

"Are any lessons left?"

no

es

Finish

Figure 3. Specification of the Relations

20

26

Start

kUser enters ADD, DELETE, LIST, or END

ADD?

'no

1
i-.....

DELETE?

\, 1

no

LIST?

yes

yes

User enters codes of the two
lessons which specify the
relation to be added.

yes

User enters codes of the two
lessons which specify the
relation to be deleted.

yes Program types
out all
relations.

no no

no

User enters code of
lesson for which rela-
tions are to be listed.

Finish

Program types
relations in-
volving that

lesson.

Figure 4. Changes to the Relations

21

which. the management program is based. The first step in this analysis

is to generate a level structure, a procedure which is possible for

any acyclic digraph. If the digraph is not acyclic, i.e., it contains

a cycle, then it is not possible to generate a unique level structure.

In this case, the program branches to a routine which identifies the

cycle and returns the user to the third part of the program where he

may delete one or more of the relations in the offending cycle. After

a level structure is successfully generated, it is typed for the user

so that he may use the information if he cares to make a diagram of

the structure which he has specified. The lessons that were assigned

to the lowest level become entry points to the curriculum when it is

served by the management program. After the levels are typed, further

analysis is undertaken to simplify the resulting digraph model. Since

all the relations specified are assumed to be transitive, any explicitly

stated transitive relations are unnecessary and are then removed (see

page 13). An example of a redundant transitive relation is the case

in which a relation was explicitly specified for a lesson that was

only indirectly necessary for the mastery of another. Finally, all

relations remaining in the acyclic digraph model are typed out by

level to complete the analysis. The structure data, consisting of

lesson codes, their order within the level structure, and the rela-

tions connecting them, are saved as a dataset named STRUCTURE:PIL.

The steps taken to form the digraph model in the fourth part of the

program are summarized in the flow chart in figure 5. Details of

the analysis of part four of the program are given in the form of

22

28

Start

1

I

Using Algorithm L, program
generates level structure.

"Level structure possible?" no
)

Using Algorithm C, pro-
determined by Algorithm L. gram searches for cycles.

yes

Program types out
level structure.

Using Algorithm T, program
searches for and deletes
redundant relations.

Program types out all relations
of final digraph by level.

Save structure as a dataset
named STRUCTURE:PIL?

no

1

Program identifies
cyclic relations.

Program branches back
to Part 3 so that user
can delete a relation.

yes Program cata-
logs datasot as
STRUCTURE:PiL.

Finish

Figure 5. Generation of the Final Digraph

23

29

algorithms for each major step of the analysis. The conventions

used for describing the algorithms are those used by Knuth (1968,

pp. 2-4).

The first task in the analysis is to generate a level struc-

ture. Defining a (directed) path as a series of connected lines

going in the same direction, it can be shown that for an acyclic

digraph, if n is the length of the longest path, then n + 1 is the

smallest number of levels in a level assignment of the digraph. This

follows from the consideration that for a given path, the levels of

all points in that path must be distinct. A path of length n must

contain n + 1 points if the digraph is acyclic; thus n + 1 levels

are necessary (Harary et al., 1965, pp. 269-270). The algorithm used

to generate the level structure follows:

Algorithm L. (Level structure). Given the points on a digraph D
and the lines joining them, generate an ascending level structure
using the smallest possible number of levels.

Ll. [Initialize] Start a new level.

L2. [Next point] Choose the next point on D.

L3. [Transmitter?] Determine the number of lines directed into

the point. If zero, enter the point in the current level.

L4. [More points?] If all points have not been chosen, go to
L2.

L5. [Level empty?] If the current level has no entries, the
algorithm terminates: the digraph was not acyclic.

L6. [Reduce digraph] Remove those lines directed out from each
of the points in the current level. Remove these points.
If no points remain, the algorithm terminates; otherwise
the remaining points and lines make up D. Go to Ll.

24

In the event that it is not possible to generate a level

structure, a search for the cyclic relations is undertaken. The

first step in this search is a reachability calculation. Point v

is reachable from point u in a digraph if and only if there is a

sequence (or path) from u to v. After reachability has been cal-

culated for all pairs of points, a cycle can easily be identified

from the points which are mutually reachable, i.e., reachable from

each other. For purposes of calculation, a digraph can be repre-

sented in matrix form. The points and lines of the digraph are

represented by an adjacency matrix in which the rows and columns

correspond to points on the digraph, and the matrix entry a.. is

non -zero only if there is a line from v. to v. in the digraph. In

the reachability matrix the presence of a non-zero element r
ij

indicatesthatapointv.isreachablefrmapointv.(Barary et al.,

1965, p. 110). Since a point is defined to be reachable from itself,

the diagonal entries on the reachability matrix are unity. The

algorithm for finding the cyclic relations follows.

Algorithm C. (Cycle identification). Given n points on a digraph D
and the lines joining them, identify the cycles by determining which
points are mutually reachable.

Cl. [Initialize] Set r.. + a.., r.. + 1, I + 1, J + 1. (Set up
13.

matrix from adjacency matrix A, set diagonals to 1, initialize
indices)

C2. [New row?] If J > n, set J + 1, I + 1.

C3. [Last row?] If I > n, set I + 1, J + 1. Go to C8.

C4. [Element nonzero?] If r[I,J] 0 0, set J + J + 1. Go to C2.

25

31

C5. [Product non-zero?] Take product of corresponding elements of

row I, column J. If one is non-zero, go to C7.

C6. [Next element] Set J J + 1. Go to C2.

C7. [J reachable from I] Set r[I,J] 4- 1, J f J + 1. Set flag.

Go to C2.

C8. [Is reachability complete?] If flag is set, initialize it and

go back to C2.

C9. [More elements?] If J > I, set J f 1, I 4- I + 1.

C10. [More rows ?] If I > n, the algorithm terminates.

Cll. [Transpose elements unequal?] If r[I,J] r[J,I], set r[I,J] 4- 0,

r[J,I] ÷ 0.

C12. [Next element] Set J f J + 1. Go to C9.

The points on the digraph which are mutually reachable, and thus make

up the cycle, are those which correspond to any row with at least one

non-zero off-diagonal element in the resulting r matrix of Algorithm C.

The user is then branched to the section of the program whLre he may

delete one or more relations.

Following the successful completion of the level structure,

the search for explicitly stated transitive relations is undertaken.

This also involves a reachability calculation, but it can be shortened

somewhat by first rearranging the matrix representation of the digraph

in upper triangular form, a form that is always possible when repre-

senting an acyclic digraph (Harary et al., 1965, pp. 268-269). The

upper triangular form is easily obtained by ordering the points

corresponding to the rows and columns of the matrix in the same

order as that which resulted from the generation of the level struc-

ture. The algorithm for identifying and removing explicitly stated

transitive relations follows.

26

3:

Algorithm T. (Transitive relation identification). Given n points
on an acyclic digraph D represented by the upper-triangular adjacency
matrix A, identify and remove those lines representing transitive
relations.

Tl. [Initialize] A.j is upper triangular. Set I 4- 1, J I + 2

T2. [New row?] If J > n, set 14 I + 1, J f I + 2

T3. [Last row?] If I > n, set I 1, J I = 2. Go to T9.

T4. [Element negative?] If a[I,J] < 0, set J J + 1. Go to T2.

T5. [Product non-zero?] Take product of corresponding upper-
triangular elements of row I, column J. If one is non-zero,
go to T7.

T6. [Next element] Set J 4 J + 1. Go to T2.

T7. [Element positive?] If a[I,J] > 0, type out message that the
line from point I to J was redundant. (Point J was reachable
from point I by some combination of lines; its explicit specifica-
tion was unnecessary.)

T8. [J reachable from I] Set a[I,J] -1, J 4 J + 1. Set flag.
Go to T2.

T9. [Is reachability complete ?] If flag is set, initialize it and
go back to IL Otherwise the algorithm terminates..

This algorithm calculates reachability and superimposes elements

representing paths of length two or more over the adjacency matrix

by assigning them values of -1. If the calculation yields a path

of length two or more between two points for which a line is present

on the digraph, that line is transitive and therefore redundant.

Its corresponding element is changed on the matrix from +1 to -1,

and when the algorithm terminates the positive elements represent

the final adjacency matrix.

Finally, the relations are typed out in the upper-triangular

order, and the final structure is saved as a dataset named STRUCTURE:PIL

27

at the user's option. The user may then draw a graphical representa-

tion of the digraph that has resulted from the use of the program.

C. The Mastery Data Base

There were two considerations in the developmeLt of the data

base for the management program: what information should be saved

and in what form should that information be stored? Both of these

considerations depended upon the function of the management program.

Since one objective was to keep the system as simple as possible to

use and maintain, only the information essential to the functioning

of the management program was included in the data base. The informa-

tion concerning the curriculum, including the lesson identification

data and the digraph representation of the structure, was saved as

datasets named LESSON:PIL and STRUCTURE:PIL. The remaining informa-

tion consisted of the mastery data of the individual students involved

in the curriculum. This data base contained the following information:

(1) the student number, (2) the name of the student, (3) the lesson

identification code for as many points of the curriculum as were

mastered, (4) the date on which mastery was certified for each, and

(5) further information regarding the conditions of mastery.

The student mastery data base was set up in the form of a

linked list, an information structure in which each element of a

list points to other related elements, in order to facilitate

accessibility to the mastery data by the management program. The

linked list improves accessibility over a sequential format by

allowing a search procedure to examine relatively fewer entries of

28

the list to find the correct entry. The entries of the data base each

contained a left link, pointing to the next-entered lower-ordered

entry, and a right link, pointing to the next-entered high-ordered

entry. The ordering was based on the student number of each entry.

The data base is started when the first mastery record is added. As

each new record of mastery is added to the data file, it is simply

attached to the end of the file, and its order within the file is

represented by adding a new link to one of the already-existing records

of the file. This type of ordering scheme, in which new records are

added to the file in any order, is due to the efforts of Booth and

Colin (1960), and is used to best advantage when the entries are

randomly ordered. The algorithm used to add a new record of mastery

data to the file follows.

Algorithm A. (Add mastery records). Given the student number NUM
of the student for whom the mastery data are to be added and the
number of mastery records NR currently on the file, add mastery
records at the end of the file and specify their sequence within
the file by altering appropriate links of existing records.

Al. [Read record] Read next record from the mastery file. Set

L its left link, R t its right link, and S t its student
number.

A2. [Mismatch ?] If NUM 0 S, go to A5.

A3. [Name?] If the variable NAME is defined, go to A5.

A4. [Define name] Set NAME t name field of last record read.

A5. [Compare numbers] If NUM < S, go to A8.

A6. [Right link positive?] If R > 0, position mastery file at
record R. Go to Al.

A7. [Link to last record] Set R t NR 1. Go to A10.

29

A8. [Left link positive?] If L > 0, position mastery file at
record L. Go to Al.

A9. [Link to last record] Set L NR + 1.

A10. [Rewrite] Position mastery file back one record. Rewrite last
record onto mastery file with new values of L and R. Position
mastery file after last record. Set L O.

All. [Name?] If the variable NAME is defined, go to A13.

Al2. [Get NAME] Read NAME from user terminal. (New Student)

A13. [Get mastery data] Read mastery data from user terminal.

A14. [One record?] If mastery data will all fit onto one new
record, set R 0; otherwise set R NR + 2.

A15. [Write record] Write new mastery record onto mastery file
with values of L, R, NUM and NAME. Set NR NR + 1.

A16. [More data?] If there are additional mastery data which did
not fit onto the last record, go to A14. Otherwise the
algorithm terminates.

In order to determine which lessous have been mastered by a

particular student, a search routine similar to the routine to add

a record was employed. The algorithm for this search follows.

Algorithm S. (Search mastery file). Given the student number NUM
of the student for whom the mastery record is searched and the
number of mastery records NR currently of the file, search the
file for all records containing information for that student.

Sl. [Read record] Read next record from the Mastery file. Set

L its left link, R its right link, and S + its student
number.

S2. [Mismatch?] If NUM 0 S, go to S6.

S3. [Name ?]. If the variable NAME is defined, go to S5.

S4. [Define NAME] Set NAME + name field of last record read.

S5. [Mastery data] Store mastery information from last record
read.

30

3 C3

S6. [Compare numbers] If NUM < S, go to S8.

S7. [Right link positive ?] If R > 0, position mastery file at
record R. Go to Sl. Otherwise, go to S9.

S8. [Left link positive ?] If L > 0, position mastery data file at
record L. Go to Sl.

S9. [Name ?] If the variable NAME is defined, the stored mastery
information is complete; the algorithm terminates. Otherwise,
the input value NUM has no entries on the mastery file; branch
to error message; the algorithm terminates.

If the mastery data file had been organized in the form of a sequential

list instead of a linked list, a search routine would have to read

every record in the mastery file, compare its number field with the

number searched for, and, if they matched, store the data. Algorithm

S requires that many fewer records be read and compared, and increases

the efficiency over the sequential search as the number of records in

the file increases.

D. Utility Programs to Maintain the Data Base

To start and maintain the mastery data base so that it was

current for any student at the time he wished to use the system, it

was necessary to add the mastery data to it in the instructional

setting. Two functions were deemed necessary: the ability to add

mastery data to the data base and the ability to see what has been

entered for a given student. To achieve phis, two interactive

programs were implemented. They were both designed from the view-

point of being easy to use in the instructional setting and occupying

the smallest possible computer storage. The programming language

used for each was the interpretive language PIL (University of

31

3 "4

Pittsburgh Computer Center, 1969) that is supported by the Time-

Sharing System at the University of Pittsburgh. The interactive

processor CATALYST/PM was not used because the amount of interaction

required by these programs was small, whereas the functions they

performed were done more efficiently by the interpretive language

alone.

The program to input mastery data was designed to be used in

or near the classroom with a remote terminal. Mastery data con-

sisting of the student's name, his student number, the lessons

mastered, and their respective dates of mastery are entered from

a data sheet prepared by a classroom aide. From this sheet the

user in the instructional setting can enter the mastery data by

means of the input program named INPUT:PIL. The input program,

the first time it is used, creates the mastery file, which is then

saved as a dataset named MASTERY:PM. Subsequent uses of the

program add data to this mastery file.

The input program first Ftores the lesson codes from the

structure data file so that a typing error by the user does not

result in erroneous mastery data. The user may also specify

other lesson codes that he may input to the mastery file which

would not otherwise be accepted. Then the user enteis the student

number of each student for whom mastery data are to be entered,

along with the data for the lessons mastered. Algorithm A is

carried out, which adds the appropriate mastery data to the mastery

file. The lesson codes entered must correspond to one of the

32

codes from the structure data file unless exceptions ware specified.

The dates should be five-digit integers. A sixth character may be

suffixed to the data entered as a condition on the mastery. For

instance, if desired, a sixth character can indicate that a lesson

should Le considered mastered from the point of view of the student's

progress within the curriculum, but that the lesson was not, in

fact, mastered according to criteria set by the curriculum designer.

The program to input mastery data is represented by the flow chart

in figure 6.

The program to retrieve data for a given student or for the

entire student mastery file was also designed for use in the class-

room with a remote terminal. If the student number for a single

student is input, the program searches for and types out the lesson

codes mastered with their dates of mastery. Or, if a complete

listing is wanted, mastery information for the entire file is typed..

This program, named LIST:PIL, uses only the mastery data from

MASTERY:PIL. To find the data for a single student, the search

procedure of Algorithm S is used. To output the entire file, a

different procedure is used, which is described in the algorithm

which follows.

Algorithm P. (Postorder traversal of mastery file). Given the
mastery file formed using Algorithm A and the use of an auxiliary
stack, traverse the file outputting mastery data for all students
in order by their student number.

Pl. [Initialize] Set J 1, set up empty stack.

P2. [J zero?] If J = 0, go to P5.

33

39

INPUT:PIL

Start

Program types out lesson
codes from structure file

Are there additional yes User
enters
them.

codes that should
be recognized?

no

User enters student number.

::)

Program determines: no
"Is it zero?"

yes

Finish

Using Algorithm A,
the program adds
mastery records to
the mastery file.

Figure 6. Program to Input Mastery Data

34

P3. [Stack J] Push the value of J onto the stack.

P4. [Read record] Position mastery file forward to record J.
Read that record. Set J 4 its left link. Go to P2.

P5. [Stack empty?] If stack is empty, go to P13.

P6. [J = Stack] Pop a value from the stack; set it equal to J.

P7. [Read record] Position mastery file back to record J. Read
that record. Set J its right link.

P8. [Next student?] If the record read is the first record of
another student, go to P10.

P9. [Mastery_data] Store mastery information from last record
read. Go to P2.

P10. [First student?] If this is the first time through, go to
P12. (No stored information yet.)

Pll. [Output data] Type out the mastery information which was
stored from previous student: NAME, NUM, lesson codes and
dates.

P12. [Next student] Set NAME 4 name field of last record. Set

NUM 4 its student number. Go to P9.

P13. [Last student] Type out the mastery irifiitMation which was
stored from last student. The algorithm terminates.

An outline of the program to type out the mastery data is repre-

sented by the flow chart in figure 7.

E. The Program to Provide Options

The processor to specify curriculum structure generates two

output files, the lesson identification file (LESSON:PIL) and the

structure file (STRUCTURE:PIL). The program to input mastery data

generates a mastery data file (MASTERY:PIL). The program which was

developed to provide options to the student uses all three of these

files as input data. The option program, named OPTION:PIL and

35

41

LIST;PIL

Start

1

List all students?
yes

Algorithm P is employed

no

User enters student number.

Program determines:
"Is it zero?"

yes

Finish

to type out mastery file.

Finish

no
Algorithm S is used
to search mastery
file.

Program determines:

(
no

"Was number found?"

yes

V

Program types out
mastery information.

Figure 7. Program to List Mastery Data

36

42.

written in the interpretive language, is the one program in the

management system that the student can use himself. It is an inter-

active program designed to be run on a remote terminal in or near

the classroom. Output from the option program consists of a list

of the lessons in the curriculum that the student, by virtue of his

previous mastery of lessons, may select. The choice of the lesson,

in fact, is not recorded at the terminal, since the lesson chosen

may depend on the student's later investigation of the lesson

materials, the availability of those materials, and the judgment

of the teacher. The option program was designed to be used by the

student or teacher as a classroom aid, was not to be restrictive or

binding on the progress of the student, and was to be, in fact,

strictly optional itself.

The option program determines which lessons from the curriculum

have already been mastered by the student in question and super-

imposes this information over the digraph model of curriculum struc-

ture in order to determine the lessons to which the student may

proceed. Then it outputs each lesson choice along with the descrip-

tion of the student's information. It accepts any combination of

lessons mastered regardless of the curriculum structure at the time

the program is used. Without this feature, the management program

could not adapt to variations in the curriculum or its structure.

It was designed to be simple to use, require minimal input informa-

tion via the terminal, and yield short and concise output informa-

tion.

37

The option program first accesses the dataset STRUCTURE:PIL

and stores the structural information regarding the lessons. It then

requires only that the student using it enter his student identifica-

tion number. The use of an identification number avoids the possibility

of spelling errors or the need to store abbreviated forms of names

that the student must remember. The search routine (Algorithm S) is

employed to gather information about the student from the dataset

MASTERY:PIL. When his records are found, he is presented with the

name corresponding to the identification number he has typed. A

"yes" or "no" response is all that is required for verification of

the name. Next, the lessons that have been mastered previously are

removed from the structure model of the curriculum along with all

relations involving them. The examination of the resulting struc-

ture made up of the remaining lessons determines which of them re-

quire no prerequisites. The appropriate lesson codes are then paired

with the lesson descriptions provided on the dataset LESSON:PIL, and

this information is presented to the student at the terminal. If

the list of options contains one or more lessons that have been

mastered or that the teacher feels can be skipped or are inappropriate,

the lessons in question can be removed from the list of choices, E., -,c1

a new list of options is typed out. After an appropriate list of

options is typed, the program is complete, after which another

student may use the remote terminal. Since the system is completely

time-shared, as many students may use the program simultaneously as

there are terminals available, up to the limitations of the system.

38

44.

The algorithm used in the option program to modify the digraph

in terms of the lessons mastered follows. Its function is to remove

the points that correspond to lessons mastered from the upper-trian-

gular matrix representation of the digraph model of structure, and to

output those remaining that require no prerequisites.

Algorithm R. (Remove mastered points). Given n points on acyclic
digraph D represented by the upper-triangular adjacency matrix A,
remove a subset of the n points, corresponding to lessons mastered,
and output those remaining with no prerequisites.

Rl. [Initialize] Let I be row counter, J be column counter. Set
I 1, J 1.

R2. [Check rows] If lesson of row I is not mastered, go to R4.

R3. [Mark lines] Mark all lines coming out from point I for re-
moval. (All non-zero entries in row I.)

R4. [Next row] Set I I + 1. If I < n, go to R2.

R5. [Check columns] If lesson of column J is not mastered, go to
R7.

R6. [Add lines] Add a line to digraph D from points going into
point J (i.e., entries in column J that were not marked for
removal in R3) to all points coming out from point J (i.e.,
entries in row J including any marked for removal).

R7. [Next co:Limn] Set J J + 1. If J < n, go to R5. Otherwise,
set I 1.

R8. [Check rows] If lesson of row I is mastered, go to R10.

R9. [Store option] If point I has no lines caning out from it
(i.e., no entries in row I), store it as an option. Output
the description corresponding to that option.

R10. [Next row] Set I I + 1. If I < n, go to R8. Otherwise the
algorithm terminates.

A description of the entire option program is detailed in the flow

chart of that program given in figure 8.

39

45;

OPTION ;PIL

Start

User enters student number.

(
Program determines: yes

"Is it zero?" Finish

no

Program determines: no Algorithm S is
Is it 'NEW'?" used to search

mastery file.
yes

Program determines: noProgram assumes no
lessons mastered. "Was it found?"

Algorithm R is used
to remove lessons
mastered from structure;
program types out
lessons with no pre-
requisites as options.

yes

Is the name right? no

yes

Have any of the options yes
already been mastered?

no

Program types "YOU ARE
FINISHED." (next student)

User enters those
options mastered.

Program restores
original structure.

Figure 8. Program to Provide' Options

40

F. Feedback for the Curriculum Designer

The problem of what feedback. information to provide for the

curriculum designer depends upon how he plans to use the management

program. Since the mastery data for all the students are stored on

the mastery file (MASTERY:PIL) whether or not the option program is

used to assign their lessons, these data are available for an after-

the-fact examination of the structure which was initially assumed.

Whether that examination should take the form of an analysis or just

act as an indicator depends upon the criteria used in specifying the

structure. It is unrealistic to assume that the structure specified

will be the result of detailed psychological transfer studies or

subjected to scalogram analysis for most of the uses that are to be

made of the management program. In addition, the management program

was not designed to be used in a controlled study, but as a free-

wheeling classroom aid. The structure specified need not consist

entirely of instructional materials. As an example, certain non-

instructional "lesson" points can be included in the structure as

common entry and exit points to different parts of the curriculum,

or intermediate tests can be included as points to be "mastered."

For the mastery data that are stored as a result of using

management program, several interesting indicators might be of

value to the curriculum designer. First the percentage of mastery

for each lesson at any point in time might be revealing. If this

summaty revealed that a certain lesson was mastered by fewer students

than lessons of corresponding difficulty, it could indicate trouble

41

with the lesson, with the process' used to certify mastery, with the

desirability of the lesson to the pupil, or with the availability of

the lesson in the school. The cause may or may not be obvious de-

pending on the situation, but the phenomenon could otherwise go

unnoticed in the extra-instructional setting. Next, if one looks at

the pairs of lessons for which a structural relation was said to

exist, each relation implies an order of mastery. If the order of

mastery for all such pairs across all students is examined, viola-

tions of the implied order of mastery might indicate that certain

relations specified should be re-examined. The date of mastery was

included in the student mastery data file so that the order of mastery

could be retained as part of this summary. Violations of the order

of mastery implied by a relation between two lessons include the

second lesson's mastery before the first, and the second lesson's

mastery in the absence of the first. Finally, if the first lesson

in a relation is mastered, a look at whether its mastery is followed

up by mastery of the second might be revealing in some cases. Given

the mastery of the first lesson, the number of cases in which the

second lesson is later mastered could indicate that the jump between

mastering the two lessons is too severe, or that an intermediate

lesson might be advantageous if a very low transfer rate exists.

The summary program was designed to provide the information

which might prove useful for the curriculum designer in improving

his curriculum. The program, named SUMMARY:PIL, uses the datasets

STRUCTURE:PIL and MASTERY:PIL. It carries out a postorder search

42

(Algorithm P) of the mastery file to record the following information;

(1) the number of students mastering each lesson; and, for each rela-

tion, (2) the number of students mastering the first lesson before

the second one, (3) the second lesson before the first one, (4) the

first lesson only, and (5) the second lesson only. This information

is provided only for the lessons and relations specified in the struc-

ture dataset. In case there are points of the structure that should

not be included in a mastery summary, the user can cause these points

to be deleted from the analysis by entering their codes as points to

be ignored. In case there were characters used in specifying mastery

that should not be interpreted as such for purposes of the summary,

these characters can be entered as symbols for non-mastery. A mastery

summary is typed out in a grid format, in which rows are students and

columns are lessons. An outline of the summary program appears in

the flow chart in figure 9.

G. The Management Program.

In this section the components of the management program have

been described in detail. Taken together, they form the computer-

based management program which was developed for use with adaptive

instructional systems. A schematic representation of the manage-

ment program is presented in the diagram in figure 10. The cur-

riculum designer specifies the curriculum structure using the MODEL

program. The classroom teacher or aide builds up the student

mastery data base by using the utility program to input mastery

data, INPUT:PIL. Either one can use the utility program LIST:PIL

43

43

SUMMARY:PIL

Start

Program types out lesson codes from structure file.

User enters lesson codes to be ignored.

User enters symbols for non-mastery.

Algorithm P is used to traverse mastery file.

Program types out grid of lessons mastered.

1

Program types out summary of structural relations.

Finish

Figure 9, Mastery Data Summary Program

44

5r)

Curriculum

designer

Classroom

personnel

Program to specify
structure. (MODEL,

MODEL:PIL, CYCLE:PIL)

1.-

Curriculum structure.
(LESSON:PIL and

I STRUCTURE:PIL)

Summary
program.

(SUMMARY:PIL)

Program to input
mastery data.
(INPUT:PIL)

Mastery data
base.

(MASTERY:PIL)

Option
program.

(OPTION:PIL)

Student

Figure 10. Schematic Representation of the Management Program

45

51

designed to list the mastery data file in order to examine this file.

The mastery data file, MASTERY:PIL, and the structure file, STRUC-

TURE:PIL, are used as inputs for the program to provide options,

OPTION :PTT, with which the student interacts. These files are also

ased as input to the summary program, SUMMARY:PIL, which feeds back

information to the curriculum designer about the success of his

curriculum. After the student chooses his instructional materials

and masters them, this information is compiled by the classroom

personnel and entered onto the mastery data file in preparation for

the next time the OPTION:PIL program is used.

46

r.;

III. RESULTS OF THE FIELD TEST

A. Choice of IPI Science

After the management program had been developed, the next

step was to apply it to an existing instructional setting. The IPI

Science program being used at Oakleaf School was chosen to demonstrate

the management program because its characteristics were such that the

management program could be used to advantage. First, the Science

curriculum contained a large amount of material from differing con-

tent areas, so that allowing the student a choice of instructional

sequence had relevance. Second, the IPI Science program was not a

stable curriculum, and its hierarchies were not well established.

The flexibility and adaptability of the management program can be

used to best advantage when applied to a curriculum that is subject

to periodic revision and normal evolution.

The IPI Science program consists of several "levels" which

correspond roughly to grade levels in the elementary school. The

goal of the IPI Science program is to provide instruction within

the IPI framework for kindergarten through grade nine. Instruction

in effect at Oakleaf School began in grade one with level A Science.

Level B Science normally began in grade two, but students might

enter it in grade one after completing level A. Before beginning

instruction in a certain level, a student was required to take a

placement test for required entering behaviors and prior mastery

of material to be presented within that level. Within each lesson

47

5J

in the level was a "curriculum-embedded test" which tested the be-

havioral objective of that lesson and served to certify its mastery.

In practice, level A Science lessons were grouped into units

representing a set of related objectives. Each time a student mas-

tered all lessons in a unit he went to the teacher for a new "pre-

scription," in most cases a new unit to study. The dominant mode of

instruction in level A Science had been the taped lesson, consisting

of a tape cassette and a box of manipulative materials, by which the

student received instructions through a set of earphones connected

to a playback device. There was a summary chart for each student

entitled "Student Order of Program," which contained blocks for all

the units of level A which were crossed out as each unit was mastered.

A copy of this chart is shown in figure 11. Within each unit a pre-

scription sheet was used to record the progress of each student in

mastering the lessons. In addition, there were other instructional

activities not required for the mastery of any unit, including group

activities and individual student projects. To implement the manage-

ment program, the level A Science units contained on the chart from

which prescriptions were given (figure 11) were selected as the

curriculum points. Level A included three placement tests which

tested for prior mastery of the units. These tests were also con-

sidered to be curriculum points, as was an introductory unit on the

use of the tape players. Further information concerning the rationale,

development, and operations of IPI Science can be found in Lipson

(1966), Klopfer and Weber (1969), and Learning Research and Develop-

ment Center (1970).

48

51

I
P
I

S
C
I
E
N
C
E

S
T
U
D
E
N
T

O
R
D
E
R

O
F

P
R
O
G
R
A
M

R
O
O
M

G
R
A
D
E

N
A
M
E

A

L
E
V
E
L

C
O
L
O
R

1
2

S
I
Z
E
/
S
P
A
C
E

1
2

1

S
O
R
T
I
N
G

T
H
I
N
G
S

1
2

S
O
U
N
D

1
9

I
N
C
H
I
N
G

A
L
O
N
G

1
2

3
4

S
M
E
L
L
S

1
2

S
H
A
P
E
S

1
2

3

I
R
O
N

P
U
L
L
E
R
S

1
2

3

F
I
L
L
I
N
G

T
H
I
N
G
S

1
2

3

N
E
W

S
O
R
T
S

S
I
N
K

O
R
S
W
I
M

1
2

T
I
M
E

1
2

3

M
E
A
S
U
R
I
N
G

T
E
M
P
E
R
A
T
U
R
E

1
2

3
P
T
.

I

P
T
,

I
I

F
R
E
E
P
L
E

G
A
M
E

(
A
L
T
E
R
N
A
T
E

U
N
I
T
)

H
O
T

A
N
D

C
O
L
D

L
I
G
H
T

.
.
.
.
.
.
.

1
2

M
E
A
S
U
R
I
N
G

T
E
M
P
E
R
A
T
U
R
E

E
X
P
L
O
R
I
N
G

U
N
I
T
.

1
2

3
4

F
i
g
u
r
e

1
1
.

S
t
u
d
e
n
t

O
r
d
e
r

o
f

P
r
o
g
r
a
m

B. Specification of Structure

Specifying the structure to be used with the management pro-

gram at the Oakleaf School involved deciding what the points of that

structure were to be and determining how they were related. The units

listed on the chart entitled "Student Order of Program" (figure 11)

are a logical choice of the points for the curriculum structure. The

points of the structure correspond to decision points in the manage-

ment of instruction, since prescriptions are written by the teacher

upon completion of each unit listed on the chart. In addition, three

placement tests, called "mini-placement tests," were included in the

structure, since a placement test must be taken before the units which

it tests can be prescribed. With the initial unit, which teaches the

use of the tape machines, there was a total of twenty points on the

curriculum structure. To these twenty points, or "lessons," were

assigned lesson codes by which they would be referencea in the various

programs. After this task was completed, the "description" of each

was written; i.e., the information which was to be presented to the

student in choosing his option. Because of the young age of the

students who were to use the program and their limited vocabulary,

the temptation to describe the lessons in terms of behavioral objec-

tives was resisted. Instead, each lesson was described by asking

a rhetorical question which might generate interest in its content.

At this point the program to specify curriculum structure, MODEL,

was run and the lesson information that was entered was stored as a

dataset named LESSON:PIL. The program was stopped short of the

50

56

point of specifying structure, however. The points of the cur-

riculum, including their codes, names, and descriptions, that made

up the lesson list that was used for the program are given in

figure 12.

After the lesson list was completed, the structural rela-

tions of that group of lessons were specified by using the program

to specify structure, MODEL. A person that had been instrumental

in developing the level A IPI Science curriculum and responsible

for supervising its management at Oakleaf School at the beginning

of the school year interacted with the MODEL program. Within

approximately one and one-half hours the specification of the

structure was completed. This person was completely unfamiliar

with either the remote terminal or the workings of the program

prior to this time. The author was present to answer, questions

regarding the use of the terminal. The structure was altered

slightly after the program had been put to use in the school be-

cause of procedures which the teacher used in prescribing three

lessons. Two of these lessons were omitted from the structure

because they were never prescribed in practice, and one lesson was

moved to a higher level to allow for a prerequisite lesson. In

this case, the author, thoroughly familiar with the program, was

able to completely specify the structure in about one-half hour.

The final form of the structure of the full set of twenty lessons

is described by the hierarchy chart in figure 13, drawn from the

structure as typed out by the MODEL program.

51

J I

lb

t

L
E
S
S
O
N

:
P
I
T
,

1
3

A
U
G

1
9
7
0

A
F

A
u
d
i
o

F
r
a
m
e

S
y
s
t
e
m
:

H
o
w

d
o

t
h
e

t
a
p
e

m
a
c
h
i
n
e
s

w
o
r
k
?

C
O

C
o
l
o
r
:

R
e
d
,

g
r
e
e
n
,

y
e
l
l
o
w
,

b
l
u
e

-

C
a
n

y
o
u

p
i
c
k

t
h
e

r
i
g
h
t

c
o
l
o
r
?

P
1

M
i
n
i
-
P
l
a
c
e
m
e
n
t

1
:

A

t
e
s
t

t
o

s
e
e

w
h
a
t

y
o
u

c
a
n

d
o
.

S
T

S
i
z
e
/
S
p
a
c
e
:

W
i
l
l

t
h
e

w
o
o
d
e
n

b
l
o
c
k

f
i
t

i
n
t
o

t
h
e

b
o
x
?

S
O

S
o
u
n
d
:

C
a
n

y
o
u

t
e
l
l

w
h
a
t

m
a
d
e

t
h
a
t

s
o
u
n
d
?

S
M

S
m
e
l
l
s
:

H
o
w

g
o
o
d

i
s

y
o
u
r

n
o
s
e
?

W
h
a
t

t
h
i
n
g
s

s
m
e
l
l

t
h
e

s
a
m
e
?

I
P

T
r
o
n

P
u
l
l
e
r
s
:

W
h
a
t

i
s

a

m
a
g
n
e
t
?

w
h
a
t

t
h
i
n
g
s

w
i
l
l

i
t

p
i
c
k

u
p
?

S
T

S
o
r
t
i
n
g

T
h
i
n
g
s
:

W
h
a
t

i
s

a

s
e
t
?

C
a
n

y
o
u

s
o
r
t

t
h
i
n
g
s

i
n
t
o

s
e
t
s
?

P
2

M
i
n
i
-
P
l
a
c
e
m
e
n
t

2
:

A

t
e
s
t

t
o

h
e
l
p

y
o
u

s
p
e
e
d

a
h
e
a
d

i
n

s
c
i
e
n
c
e
.

I
A

T
n
c
h
i
n
g

A
l
o
n
g
:

W
h
i
c
h

o
n
e

i
s

l
o
n
g
e
r
?

W
h
i
c
h

o
n
e

i
s

s
h
o
r
t
e
r
?

H
o
w

l
o
n
g

i
s

i
t
?

S
H

S
h
a
p
e
s
:

W
h
a
t

s
h
a
p
e

i
s

a

p
e
n
n
y
?

A

s
t
i
c
k

o
f

g
u
m
?

A

r
u
b
b
e
r

b
a
l
l
?

0
F
T

F
i
l
l
i
n
g

T
h
i
n
g
s
:

H
o
w

m
a
n
y

w
i
l
l

f
i
l
l

t
h
i
s

o
n
e
?

H
o
w

m
a
n
y

w
i
l
l

f
i
l
l

t
h
a
t

o
n
e
?

N
S

N
e
w

S
o
r
t
s
:

C
a
n

y
o
u

s
o
r
t

t
h
i
n
g
S

i
n

n
e
w

m
a
y
s
?

W
h
a
t

a
r
e

t
h
e

n
e
m

w
a
y
s

t
o

s
o
r
t

t
h
i
n
g
s
?

P
3

M
i
n
i
-
P
l
a
c
e
m
e
n
t

3
:

A

t
e
s
t

t
o

f
i
n
d

o
u
t

w
h
a
t

y
o
u

k
n
o
w
.

S
S

S
i
n
k

o
r

S
w
i
m
:

W
h
a
t

t
h
i
n
g
s

f
l
o
a
t

i
n

w
a
t
e
r
?

W
h
a
t

t
h
i
n
g
s

s
i
n
k
?

T
I

T
i
m
e
:

H
o
w

l
o
n
g

d
o
e
s

i
t

t
a
k
e

f
o
r

s
o
m
e
t
h
i
n
g

t
o

h
a
p
p
e
n
?

W
h
a
t

t
h
i
n
g
s

h
a
p
p
e
n

f
i
r
s
t
?

M
T

M
e
a
s
u
r
i
n
g

T
e
m
p
e
r
a
t
u
r
e
:

D
o

y
o
u

k
n
o
w

h
o
w

t
o

u
s
e

a

t
h
e
r
m
o
m
e
t
e
r
?

F
G

F
r
e
e
p
l
e

G
a
m
e
:

W
o
u
l
d

y
o
u

l
i
k
e

t
o

p
l
a
y

a

g
a
m
e

w
i
t
h

m
a
k
e
-
b
e
l
i
e
v
e

p
e
o
p
l
e
?

L
T

H
o
t

a
n
d

C
o
l
d

L
i
g
h
t
:

W
h
a
t

i
s

a

l
i
g
h
t
?

A
r
e

s
o
m
e

l
i
g
h
t
s

h
o
t
?

A
r
e

s
o
m
e

l
i
g
h
t
s

c
o
l
d
?

T
E

T
e
m
p
e
r
a
t
u
r
e
-
E
x
p
l
o
r
e
:

H
e
r
e

i
s

a

p
r
o
b
l
e
m
.

C
a
n

y
o
u

f
i
g
u
r
e

o
u
t

h
o
w

t
o

d
o

i
t
?

F
i
g
u
r
e

1
2
.

L
e
s
s
o
n

L
i
s
t

L
e
v
e
l

9 8 7 6 5 4 3 2 1

7
r
E
*
.
N
\

T
e
m
p
e
r
a
t
u
r
e
-

E
x
p
l
o
r
i
n
g

M
T

M
e
a
s
u
r
i
n
g

T
e
m
p
e
r
a
t
u
r
e

C
O

C
o
l
o
r

A
u
d
i
o

F
r
a
m
e

S
y
s
t
e
m

F
i
g
u
r
e

1
3
.

H
i
e
r
a
r
c
h
i
c
a
l

S
t
r
u
c
t
u
r
e

o
f

C
u
r
r
i
c
u
l
u
m

1
7
1

H
o
t

&

C
o
l
d
.

L
i
g
h
t

C. Mastery Data

Recording the student mastery data involved two tasks: get-

ting a record of the material mastered up to the point of applying

the program, and providing a mechanism for inputting the mastery of

material during the time the management program was in effect. As

part of normal classroom procedure, the teacher aide reviewed the

records of each student at the end of each Science period. If

/mastery of all material included in one of the Science units was

indicated for a student, the student's record was put aside for

examination by the teacher. The teacher would certify mastery for

the material, remove the prescription sheet for that unit, and

write a new prescription. The corresponding block on the mastery

chart entitled "Student Order of Program" (figure 11) was crossed

out for the unit mastered. If the results of a placement test

indicated prior mastery of one of the units, the corresponding

block was crossed out, but the placement test score for that unit

was also entered in the corner of the block.

In order to collect a record of the material already mas-

tered, the information from the mastery charts of all the students

was compiled. This information was then entered onto a mastery

data file by using the program to input mastery data, INPUT:PIL.

Dates that were entered on the mastery file corresponded to the

date on which mastery was certified. When mastery was indicated

by a placement test, the date of the placement test was entered.

Dates were coded in five digits: the first two digits stoo6 for

54

60.!

the year, e.g., "70" for 1970; and the last three digits stood for

the day of the year, e.g "001" for 1 January. Sometimes, even

though the teacher did not certify mastery of certain materials,

classroom management procedures called for action equivalent to

mastery. In such a case, the teacher would write "Pull" rather

than "Mastery" across the prescription sheet, and the child would

be given a new prescription as if he had mastered the material.

If such a situation occurred, the character "N" was added to the

end of the data field on the mastery file to indicate non-mastery,

even though the unit was to be considered mastered for classroom

management purposes.

Another situation arose in the classroom management pro-

cedures that was different from the original design. For two of

the units, any student who did not attain mastery had been given

a new prescription as if the unit had been mastered, but his old

prescription sheet was marked "Hold," presumably to await modifica-

tion of the lessons by the curriculum staff. Since this was uni-

formly practiced across the first grade and neither unit was being

prescribed, the points corresponding to these units were removed

from the structure which was used in the school. After the manage-

ment program was operational, further mastery information was

entered on the mastery data sheet by the teacher aide after mastery

was certified by the teacher. The new mastery data was then added

to the mastery data file before the beginnirg of each class by

using the program to input mastery data, INPUT :PIL. The mastery

55

61

data file, named MASTERY:PIL, was made up of data records which

contained a left and right link, the student number, the name of

the student, and room for mastery information of up to five lessons.

The records were stored sequentially on the file in the order that

they were entered.

D. Implementation of the Management Program

The implementation of the management program as it was

applied to IPI Science began on 24 April 1970 with the specification

of the points on the curriculum, the "lessons," using the MODEL

program. On 28 April 1970 a member of the curriculum staff specified

the structure of the lessons using the same program. MaStery data

from September, 1969, to April, 1970, was compiled from the records

at Oakleaf School, from which the mastery data file was created on

12 May 1970. Thereafter, the mastery data file was updated before

each new day of level A Science for the remainder of the school

year. Grade one Science at Oakleaf was scheduled in two sections,

the first of which met Wednesday and Friday from 11:10 A.M. to

11:50 A.M., and the second on the same days from 2:30 P.M. to

3:10 P.M.

E. Summary of the Year's Mastery Data

At the close of school for the summer at Oakleaf, the IPI

Science classroom data were delivered to the curriculum. developers.

A final check of this material was made by examining the prescrip

tion sheets for each student and checking them against the data

56

62

on the mastery data file for correct mastery information and dates.

The final structure that appeared in figure 13 was used for run-

ning the mastery data summary program. It included all the lessons

originally specified before the structure was modified for use in

the school. Of the lessons appearing in figure 13, the three place=

meat tests were not included in the summary since they were not con-

sidered to have been mastered in the sense of other lessons; they

were included in the structure only as non-instructional points of

the curriculum. These points were excluded by specifying their

respective lesson codes at the time the program SUMMARY:PIL was run.

In addition, the single character "N" was interpreted to signify

non-mastery of a lesson when it appeared after the date in the

mastery file.

The output of the mastery summary program for the level A

Science data is summarized in Table I. In the first column of

Table I the Science units have been arranged in the order of per-

centage of mastery. It is immediately evident that the last four

units had very low mastery percentages, and the curriculum designer

can note that the first two of the four,.FT and SI, are units that

were assigned early in the course of instruction. Thus he can

discover what was already known at the school, i.e., that the

students were seldom able to master these two units. The last

two units, SS and TE, although mastered by a total of only four

students, were "exploring" lessons, for which the curriculum de-

signer can be the judge of whether they were satisfactory. Looking

57

6 3

TABLE I

OAXLEAF MASTERY DATA SUMMARY

N=53

Unit
Code Mastery

Structural
Relation Transfer Inconsistencies

AF 100 . AF ÷ CO 100 0

CO 100 CO ÷ LI 72 0

SO 100 CO ÷ SI 4 2

IP 100 CO ÷ SO 100 6

ST 100 CO ÷ SM 78 13

IA 98 CO ÷ IP 100 9

SH 92 CO ÷ FT 18 6

NS 89 CO ÷ TI 79 0

SM 81 CO ÷ IA 98 0

TI 79 IP ÷ ST 100 15

LI 72 TI ÷ MT 77 30
MT 70 ST ÷ NS 89 0

FG 57 IA ÷ SH 92 9

FT 23 MT ÷ TE 3 0

SI 6 SH ÷ VS 86 43

SS 6 NS ÷ SS 6 0

TE 2 NS ÷ FG 63 2

SS ÷ TE 0 25

further at the mastery percentages of Table I, one sees that list-

ing the units in order of difficulty was not inconsistent with the

order implied by any of the structural relations. That is, although

the order in which the unit codes were listed on the summary program

output represented a valid instructional sequence, the order in

which they are listed in Table I would be a perfectly valid sequence.

The fact that none of the structural relations was violated after

58

64

ordering the lessons by mastery percentage is one indication of the

validity of the lesson hierarchy.

In examining the structural relations that are listed in

Table I, two indicators are available to the curriculum designer

for evaluating each relation. First, the percentage of transfer

is a measure of the number of students who, having mastered the

first lesson of the relation, go on to master the second one in

sequence. If the two lessons are to he closely related, a high

percentage of students would be expected to go on to master the

second lesson in a related pair. As Table I shows, this transfer

rate was greater than 50% for every relation except those involving

one of the four units: SI, FT, SS, and TE. The low rate indicated

that either these units were too difficult, or that intermediate

material should have been included to facilitate their mastery.

The second indicator, the percentage of inconsistencies,

is a measure of the number of students who mastered the second of

the lessons in the relation prior to mastering the first. Looking

at the last column of Table I, one can see that two relations had

a rather high measure of inconsistent order of mastery. Thirty

percent of the students who mastered either TI or MT were seen to

have mastered MT first. The curriculum designer would recognize

that this high percentage could be accounted for by students who

mastered MT upon taking the third placement test, which covered

both of these units. Forty-three percent of the students who

mastered either SH or NS were seen to have mastered NS first,

59

60

again mainly by virtue of a common placement test. This result

would cause the curriculum designer to re-examine the two rela-

tions to determine in each case if the lower-order unit was really

necessary for the mastery of the second. For the application of

Oakleaf School, then, the results of the summary program indicate

to the curriculum designer that he should investigate units SI,

FT, SS, and TE; and that he should re-examine the prerequisite

relations TI -4- MT and SH -4- NS.

The information that the curriculum designer can get from

the summary program is dependent upon the particular form of the

curriculum, how Ghe structure was formed, and how the program was

managed in the school. The output from the summary program is

designed only to provide basic feedback, which the user can then

;.pply to his particular situation. For the general applicability

of this management program, in which the structure is specified

beforehand, the feedback provided by the summary program is con-

centrated on the relation of actual lesson sequence to postulated

curriculum structure.

60

IV. CONCLUSION

A general model for specifying curriculum structure was

developed using the directed graph, or digraph, a mathematical form

of a structural model. The use of the digraph to describe a general

hierarchical learning structure proved to be a successful solution

to the problem of unambiguously specifying such hierarchies. Based

on the digraph model, a computer-based management program was de-

veloped to allow students using it a degree of choice in the selec-

tion of their learning activities. The development of the manage-

ment program required that an interactive computer program be

written that would allow the curriculum designer to specify the

structure of his curriculum. It allowed the structural hierarchy

to be generated as a result of the curriculum designer's responses

regarding the prerequisite relations among'the lessons of his

curriculum. It provided for analysis of his responses to rule

out such structural ambiguities as circular and redundant prere-

quisite relations among lessons. As a result, it yielded a struc-

ture that was a function of the prerequisite relations specified,

a,,,i. 'vas unique for each set of relations so specified.

The management program required that a record of each

student's mastery of the curriculum materials be available. The

student mastery data base was set up in the form of a linked list,

an information structure in which each element of a list points to

ether related elements, in order to facilitate accessibility.

Interactive computer programs which used the mastery data base

61

6 "

included a program to input mastery data, a prot-am to list the

data, and the program used by the students to receive options of

learning activities. The organization of the mastery data base

gave these programs quick access to the records of an individual

student without requiring a line-by-line search of the entire file,

and made it possible to generate an ordered list of the entire

student file without first sorting the records. The program to

provide options for the students used information from the mastery

data file to eliminate mastered lessons from a student's list of

options, and permitted an option to be presented only if all its

prerequisites had been mastered. The use of the digraph model for

structure insured additionally that changes in the structure or

content of a curriculum required regenerating only the stored

structural information.

The program designed to provide feedback information to the

curriculum 'designer provided for an after-the-fact examination of

the initially specified structure based on student mastery data

from the use of the curriculum materials. Feedback information

included the percentage of students who mastered each lesson, the

percentage of cases for which mastery of a prerequisite lesson was

followed by mastery of the next higher-ordered lesson, and the per-

centage of cases for which an implied order of mastery was violated

for two related lessons. The program was designed to provide feed-

back information regarding the mastery of curriculum objectives

regardless of whether the management program was actually employed

to prescribe options to the students.

62

6 ri

The use of the management program was demonstrated by apply-

ing it to the grade one IPI Science classes at Oakleaf School. That

the program was successfully applied in the IPI laboratory school

does not in itself imply that it can contribute substantially to

the individualization effort. Therefore, the question of whether

such a program can be useful in an actual instructional situation

employing an individualized format will be explored.

Looking at the specific situation in which the program was

applied, the level A Science curriculum lent itself well to the

hierarchical structure, but the young age of the students required

that someone be present to read them their choices. The fact that

aid was required to get the instructional materials for the students

could have been remedied had the materials been clearly identified

by means of a readable code on the boxes containing them. Although

the classroom personnel were consistently helpful and cooperative

throughout the field test, their enthusiasm for the use of the

computer system in the school was clearly lacking after they saw

it in operation. The teacher aide, in commenting on the use of

the management program by the students to get their prescriptions,

felt that the teacher could do the job faster. She was disturbed

by the extra time the students spent waiting to use the terminal,

time which could have been spent working on the next lesson. The

teacher, when asked if he would use the management program the

following year for level A Science if it were available to him,

replied that he probably would not. The main points against it

63

69

were the undependability of the computer system and the extra demand

on him and the aide when students would want to Start a unit in the

middle of the Science period. It would seem from these observations

that major points of emphasis in applying the management program

elsewhere would be (1) increasing the speed of the program to pro-

vide options, (2) improving the reliability of the time-sharing

system, (3) limiting its use to older children who can read, and

(4) insuring that its use will not interfere with other classroom

activities.

The general problem of.the usefulness of educational devices,

the properties of these devices, and their relation to the processes

of education were discussed, in a section of an essay by Oc!ttinger

and Marks (1969, pp. 159-164). They state that:

"Novelty and glamor are not the only properties
of educational tools worthy of note or sufficient
to make them valuable for teaching. What are the
really important characteristics?

Cost and value are of obvious importance .

More purely technical factors must also be
considered: flexibility, generality, scheduling,
parallelism, amount, physical accessibility, reli-
ability, maintenance, complexity, comfort, standardiza-
tion, integration, and content [p. 160]."

Considering each of these factors in turn for the management program

as it applied at Oakleaf School may provide some insight regarding

future applications.

The cost of such a program is clearly a factor against it

at the present time. Costs are characteristically borne by govern-

ment research grants, but they may come down to school board levels

64

in years to come as computer costs decrease. The flexibility of the

management program can be measured by. its ability to meet the needs

of the moment. Flexibility was one of the prime objectives in the

program's development. It was successfully demonstrated in its

application to IPI Science by allowing changes to occur in curriculum

structure and by not requiring students to progress strictly accord-

ing to that structure. Its generality was assured by developing the

structural model, although certain basic structural properties were

required. Scheduling the use of the program created a problem in

that students were permitted to use it only during the class period,

which forced many students to wait. The use of additional terminals

possible with a time-shared computer and the evolution to a less

rigid classroom schedule would help alleviate this difficulty.

Parallelism concerns having a resource available simultaneously to

several students, and is related to scheduling. If the students

may use the management program only during the class period, having

several terminals available simultaneously will improve the resource;

the need for parallelism will increase as more students use the

program. The amount of the resource available would be determined

by how much of the curriculum is included in the use of the manage-

ment program. The application to IPI Science involved a very small

portion of that curriculum; only twenty points were included in

the curriculum structure. To increase the scope of the program,

faster routines must be developed or the delays resulting will be

unacceptable.

65

71

The physical accessibility of the management program is im-

portant to its use. The use of silent CRT terminals will allow their

installation in the instructional setting. The location of the Tele-

type room across the hall from the Science classroom was a major

factor in the decision to use the Teletype rather than the inaccessi-

ble Sanders CRT terminal. Reliability is a key factor, and proved to

be a major fault of the management program. The program failed to

perform normally under certain conditions of use; specifically, heavy

afternoon time-sharing load and upon depressing the "return" key out

of sequence. That the time-sharing system failed to perform at all

during five of the class sessions was quite embarrassing, but not

abnormal for the computer service. Presumably, the reliability of

computer systems will improve as they mature with the years. Related

to reliability is maintenance. No breakdowns occurred in the equip-

ment used for the management program in the school, but time was lost

due to repairs which had to be made to the time-sharing system computer

hardware. One advantage of using time-sharing service from a central

computer is that repairs due to breakdowns are likely to be more prompt

since many users are depending on the service. Complexity of the

program concerns the training required to use it and the ease of

continuing operation. Although the management program was designed

to be as simple as possible with few demands on the user, the relative

frailty of present computer systems would certainly require a person

trained in computer usage to be available in case of trouble.

The comfort of the people using the management program is

important to its success. The people using it should feel at ease,

66

although training can bring familiarity with a complex system and

in turn instill comfort. The program must respond quickly and effi-

ciently to the neecis of those using it, however, in order to gain

their confidence. Standardization is a consideration to which com-

puter systems are extremely vulnerable. In the future, standard

computer systems should permit truly standard programming languages

to exist, but presently users are commonly limited to what has been

implemented on the particular system available to them. The manage-

ment program was written. in a language peculiar to one system, and

extensive work would be necessary to use it on another. Integration

of the management program concerns its ability to tie in with the

classroom management of the instructional program to which it is

applied. It is particularly important that the management program

be adaptable to changes in other parts of the instructional system.

If the choices of lesson materials do not correspond to materials

actually available, what is the use of the program? If its use

interferes with the instructional process, where is its future?

Finally, the content of the management program consists of the struc-

ture to which it is applied. The structural model must be applicable

to the curriculum, and the structure of the curriculum must be mean-

ingful to the actual instruction. Thus, the content is valid only

insofar as the objectives of instruction are well defined and the

resulting curriculum is based on those objectives.

In conclusion, the management program was successfully de-

veloped and later implemented in an individualized setting. Observa-

tions of its operation in the school, along with considerations of

67

7 3

the program in light of the properties of an educational device

which contribute to its usefulnes., indicate the following:

l. The students using the program must be mature
enough to take advantage of having a choice of
instructional materials presented to them,.

2. The instructional setting should be free enough
that using the program does not interfere with
classroom activities.

3. The computer system used should be reliable enough
to be available to the students at any time during
the school day, and the program should provide
information quickly and efficiently to the student
using it.

4. The financing must continue to be borne by out-
side sources until costs of computer service
lower substantially.

5. The use of the program should be tied closely to
classroom management procedures so that it may be
responsive to classroom needs.

6. The application of the program requires a struc-
tured curriculum based on well-defined objectives
of instruction in order to be meaningful.

With these considerations in mind, the development of a management

program similar to the one that has been described in this investiga-

tion can contribute to the success of adaptive programs of instruction.

68

REFERENCES

Bloom, B. S. Learning for mastery. Evaluation Comment, 1968, 1(2).

Bolvin, J. 0.' Implications of the individualization of instruction
for curriculum and instructional design. Audiovisual Instruction,
1968, 13, 238-242.

Bolvin, J. 0., & Glaser, R. Developmental aspects of individually
prescribed instruction. Audiovisual Instruction, 1968, 13, 828-
831.

Booth, A. D., & Colin, A. J. T. On the efficiency of a new method
of dictionary construction. Information and Control, 1960, 3,
327-334.

Carroll, J. B. A model of school learning. Teachers College Record,
1963, 64, 723-733.

Cooley, W. W.
Journal of

Dwyer, T. A.
interface.
University

Computer assistance for individualized education.
Educational Data Processing, 1970,7(1), 18-28.

A lesson designer's guide to CATALYST and the CATALYST/PIL
Pittsburgh, Pennsylvania: Department of Computer Science,
of Pittsburgh, 1969.

Flanagan, J. C. Program for learning in accordance with needs. Psy-
chology in the Schools, 1969, 6, 133-136.

Gagne, R. M. The acquisition of knowledge. Psychological Review,
1962, 69, 355-365.

Glaser, R. The education of individuals. Pittsburgh, Pennsylvania:
Learning Research and Development Center, 1966.

Glaser, R. Adapting the elementary school curriculum to individual
performance. In Proceedings of the 19G7 Invitational Conference
on Testing Problems. Princeton, New Jersey: Educational Testing
Service, 1968. pp. 3-36.

Harary, F., Norman, R. Z., & Cartwright, D. Structural models: An
introduction to the theory of directed graphs. New York: Wiley,
1965.

Helmer, R. T. Conditions of learning in mathematics: Sequence theory
development. Review of Educational Research. 1969, 39, 493-508.

69

7.5

Klopfer, L. E., & Weber, V. L., Jr. IPI science: A teaching revolu-
tion in the making. Science Activities, 1969, 1(1), 27-30.

Knuth, D. E. The art of computer programming. Vol. 1. Fundamental
algorithms. Reading, Massachusetts; Addison-Wesley, 1968.

Learning Research and Development Center. Individualized science:
A program with relevqnce for the child. Pittsburgh, Pennsylvania:
Learning Research and Development Center, 1970.

Lindvall, C. M., & Bolvin, J. O. The project for individually pre-
scribed instruction (the Oakleaf project). Pittsburgh, Pennsylvania:
Learning Research and Development Center, 1966.

Lindvall, C. M., Cox, R. C., & Bolvin, J. 0. Evaluation as a tool in
curriculum development: The IPI evaluation program. AERA Monograph
Series on Curriculum Evaluation, Chicago: Rand-McNally, 1970, No 5.

Lipson, J. I. An individualized science laboratory. Science and
Children, 1966, 4(4), 8-12.

Oettinger, A. G., & Marks, S. Run, computer, run: The mythology of
educational innovation. Cambridge, Massachusetts: Harvard
University Press, 1969.

Resnick, L. B. Design of an early learning curriculum. Pittsburgh,

Pennsylvania: Learning Research and Development Center, 1967.

Suppes, P. The uses of computers in education. Scientific American,

1966, 213(3) 207-220.

University of Pittsburgh Computer Center. PIL/L: Pitt interpretive
language for the IBM system/360 model 50. Pittsburgh, Pennsylvania:
University of Pittsburgh Computer Center, 1969.

Washburne, C. W. Educational measurements as a key to individualizing
instruction and promotions. Journal of Educational Research, 1922,
5, 195-206.

70

